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Refrigerant Pressures, States, and Conditions   1

Refrigerant Pressures,
States, and Conditions

CHAPTER
O N E

The typical vapor compression refrigeration
system shown in Figure 1-1 can be divided into
two pressures: condensing (high side) and
evaporating (low side). These pressures are di-
vided or separated in the system by the com-
pressor discharge valve and the metering de-
vice. Listed below are field service terms often
used to describe these pressures:

Condensing Evaporating
Pressure Pressure

High side pressure Low side p essure
Head pressure Suction pressure
Discharge pressure Back press re

CONDENSING PRESSURE

The condensing pres ure is the pressure at
which the refrigeran  changes state from a va-
por to a liquid. This phase change is referred to
as condensation. This pressure can be read
direct y from a pressure gauge connected any-
where between the compressor discharge valve
and the entrance to the metering device, as-
suming there is negligible pressure drop. In
reality, line and valve friction and the weight
of the liquid itself cause pressure drops from
the compressor discharge to the metering de-
vice. If a true condensing pressure is needed,
the technician must measure the pressure as

close to the condens r as possible to avoid these
pressure drops  This pressure is usually mea-
sured on smaller systems near the compressor
valves, Figure 1-2. On small systems, it is not
critical where a technician places the pressure
gauge (as long as it is on the high side of the
system), because pressure drops are negligible.
The pressure gauge reads the same no matter
where it is on the high side of the system if line
and valve losses are negligible.

EVAPORATING PRESSURE

The evaporating pressure is the pressure at
which the refrigerant changes state from a liq-
uid to a vapor. This phase change is referred to
as evaporation or vaporizing. A pressure gauge
placed anywhere between the metering device
outlet and the compressor (including compres-
sor crankcase) will read the evaporating pres-
sure. Again, negligible pressure drops are as-
sumed. In reality, there will be line and valve
pressure drops as the refrigerant travels through
the evaporator and suction line. The technician
must measure the pressure as close to the evapo-
rator as possible to get a true evaporating pres-
sure. On small systems where pressure drops
are negligible, this pressure is usually measured
near the compressor (see Figure 1-2). Gauge
placement on small systems is usually not criti-
cal as long as it is placed on the low side of the
refrigeration system, because the refrigerant

Cop
yri

gh
t E

sc
o P

res
s



2   Troubleshooting and Servicing Modern Air Conditioning and Refrigeration Systems

Figure 1-1. Typical compression refrigeration system

vapor pressure acts equally in all directions. If
line and valve pressure drops become substan-
tial, gauge placement becomes critical. In larger
more sophisticated systems, gauge placement
is more critical because of associated line and

valve pressure losses. If the system has signifi-
cant line and valve pressure losses, the techni-
cian must place the gauge as close as possible
to the component that requires a pressure
reading.
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Refrigerant Pressures, States, and Conditions   3

saturated vapor, respectively. Saturation occurs
in both the evaporator and condenser. At satu-
ration, the liquid experiences its maximum tem-
perature for that pressure, and the vapor expe-
riences its minimum temperature. However,
both liquid and vapor are at the same tempera-
ture for a given pressure when saturation oc-
curs. Saturation temperatures vary with differ-
ent refrigerants and pressures. All refrigerants
have different vapor pressures. It is vapor pres-
sure that is measured with a gauge.

Vapor Pressure

Vapor pressure is the pressure exerted on a
saturated liquid. Any time saturated liquid and
vapor are together (as in the condenser and
evaporator), vapor pressure is generated. Va-
por pressure acts equally in all directions and
affects the entire low or high side of a refrig-
eration system.

As pressure increases, saturation temperature
increases; as pressure decreases, saturation tem-
perature decreases. Only at saturation are there
pressure/temperature relationships for refriger-
ants. Table 1-1 shows the pressure/temperature
relationship at saturation for refrigerant 134a
(R-134a). If one attempts to raise the tempera-
ture of a saturated liquid above its saturation
temperature, vaporization of the liquid will
occur. If one attempts to lower the temperature
of a saturated vapor below its saturation tem-
perature, condensation will occur. Both vapor-
ization and condensation occur in the evapora-
tor and condenser, respectively.

The heat energy that causes a liquid refrigerant
to change to a vapor at a constant saturation
temperature for a given pressure is referred to
as latent heat. Latent heat is the heat energy
that causes a substance to change state without
changing the temperature of the substance.
Vaporization and condensation are examples of
a latent heat process.

Figure 1-2. Semi-hermetic compressor showing pressure

access valves (Courtesy, Danfoss Automatic Controls,

Division of Danfoss, Inc.)

REFRIGERANT STATES AND CONDITIONS

Modern refrigerants exist either in the vapor or
liquid state. Refrigerants have such low freez-
ing points that they are rarely in the frozen or
solid state. Refrigerants can co-exist as vapor
and liquid as long as conditions are right. Both
the evaporator and condenser house liquid and
vapor refrigerant simultaneously if the system
is operating properly. Refrigerant liquid and
vapor can exist in both the high or low pres-
sure sides of the refrigeration system.

Along with refrigerant pressures and states are
refrigerant conditions. Refrigerant conditions
can be saturated, superheated, or subcooled.

Saturation
Saturation is usually defined as a temperature.
The saturation temperature is the temperature
at which a fluid changes from liquid to vapor
or vapor to liquid. At saturation temperature,
liquid and vapor are called saturated liquid and

Cop
yri

gh
t E

sc
o P

res
s



4   Troubleshooting and Servicing Modern Air Conditioning and Refrigeration Systems

Temperature Pressure Temperature Pressure

(°F) (psig)  (°F)  (psig)

-10 1.8

-9 2.2

-8 2.6 30 25.6

-7 3.0 31 26.4

-6 3.5 32 27.3

-5 3.9 33 28.1

-4 4.4 34 29.0

-3 4.8 35 29.9

-2 5.3 40 34.5

-1 5.8 45 39.5

0 6.2 50 44.9

1 6.7 55 50.7

2 7.2 60 56.9

3 7.8 65 63.5

4 8.3 70 70.7

5 8.8 75 78.3

6 9.3 80 86.4

7 9.9 85 95.0

8 10.5 90 104.2

9 11.0 95 113.9

10 11.6 100 124.3

11 12.2 105 135.2

12 12.8 110 146.8

13 13.4 115 159.0

14 14.0 120 171.9

15 14.7 125 185.5

16 15.3 130 199.8

17 16.0 135 214.8

18 16.7

19 17.3

20 18.0

21 18.7

22 19.4

23 20.2

24 20.9

25 21.7

26 22.4

27 23.2

28 24.0

29 24.8

Table 1-1. R-134a saturated vapor/liquid pressure/

temperature chart

words, all of the liquid must be vaporized for
superheating to occur; the vapor must be re-
moved from contact with the vaporizing liquid.
Once all the liquid has been vaporized at its
saturation temperature, any addition of heat
causes the 100% saturated vapor to start super-
heating. This addition of heat causes the vapor
to increase in temperature and gain sensible
heat. Sensible heat is the heat energy that causes
a change in the temperature of a substance. The
heat energy that superheats vapor and increases
its temperature is sensible heat energy. Super-
heating is a sensible heat process. Superheated
vapor occurs in the evaporator, suction line,
and compressor.

Subcooling
Subcooling always refers to a liquid at a tem-
perature below its saturation temperature for a
given pressure. Once all of the vapor changes
state to 100% saturated liquid, further removal
of heat will cause the 100% liquid to drop in
temperature or lose sensible heat. Subcooled
liquid results. Subcooling can occur in both the
condenser and liquid line and is a sensible heat
process. Another method of subcooling liquid,

called liquid pressure amplificationTM, is cov-
ered in Chapter Two. This method increases
the pressure on subcooled liquid, causing it to
be subcooled even more. This creates a liquid
with a temperature below its new saturation
temperature for the new higher pressure.

A thorough understanding of pressures, states,
and conditions of the basic refrigeration sys-
tem enables the service technician to be a good
systematic troubleshooter. It is not until then
that a service technician should even attempt
systematic troubleshooting.

BASIC REFRIGERATION SYSTEM

Figure 1-3 illustrates a basic refrigeration sys-
tem. The basic components of this system are
the compressor, discharge line, condenser, re-
ceiver, liquid line, metering device, evaporator,
and suction line. Mastering the function of each
individual component can assist the refrigera-

Superheat
Superheat always refers to a vapor. A super-
heated vapor is any vapor that is above its
saturation temperature for a given pressure. In
order for vapor to be superheated, it must have
reached its 100% saturated vapor point. In other
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Refrigerant Pressures, States, and Conditions   5

Figure 1-3. Basic refrigeration system

tion technician with analytical troubleshooting
skills, saving time and money for both techni-
cian and customer.

Compressor
One of the main functions of the compressor is
to circulate refrigerant. Without the compres-

sor as a refrigerant pump, refrigerant could not
reach other system components to perform its
heat transfer functions. The compressor also
separates the high pressure from the low pres-
sure side of the refrigeration system. A differ-
ence in pressure is mandatory for fluid (gas or
liquid) flow, and there could be no refrigerant
flow without this pressure separation.
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6   Troubleshooting and Servicing Modern Air Conditioning and Refrigeration Systems

Another function of the compressor is to el-
evate or raise the temperature of the refrigerant
vapor above the ambient (surrounding) tempera-
ture. This is accomplished by adding work, or
heat of compression, to the refrigerant vapor
during the compression cycle. The pressure of
the refrigerant is raised, as well as its tempera-
ture. By elevating the refrigerant temperature
above the ambient temperature, heat absorbed
in the evaporator and suction line, and any heat
of compression generated in the compression
stroke can be rejected to this lower temperature
ambient. Most of the heat is rejected in the
discharge line and the condenser. Remember,
heat flows from hot to cold, and there must be
a temperature difference for any heat transfer
to take place. The temperature rise of the re-
frigerant during the compression stroke is a
measure of the increased internal kinetic en-
ergy added by the compressor.

The compressor also compresses the refriger-
ant vapors, which increases vapor density. This
increase in density helps pack the refrigerant
gas molecules together, which helps in the con-
densation or liquification of the refrigerant gas
molecules in the condenser once the right
amount of heat is rejected to the ambient. The
compression of the vapors during the compres-
sion stroke is actually preparing the vapors for
condensation or liquification.

Discharge Line
One function of the discharge line is to carry
the high pressure superheated vapor from the
compressor discharge valve to the entrance of
the condenser. The discharge line also acts as
a desuperheater, cooling the superheated va-
pors that the compressor has compressed and
giving that heat up to the ambient (surround-
ings). These compressed vapors contain all of
the heat that the evaporator and suction line
have absorbed, along with the heat of compres-
sion of the compression stroke. Any generated
motor winding heat may also be contained in
the discharge line refrigerant, which is why the
beginning of the discharge line is the hottest
part of the refrigeration system. On hot days
when the system is under a high load and may
have a dirty condenser, the discharge line can

reach over 400°F. By desuperheating the re-
frigerant, the vapors will be cooled to the satu-
ration temperature of the condenser. Once the
vapors reach the condensing saturation tempera-
ture for that pressure, condensation of vapor to
liquid will take place as more heat is lost.

Condenser
The first passes of the condenser desuperheat
the discharge line gases. This prepares the high
pressure superheated vapors coming from the
discharge line for condensation, or the phase
change from gas to liquid. Remember, these
superheated gases must lose all of their super-
heat before reaching the condensing tempera-
ture for a certain condensing pressure. Once
the initial passes of the condenser have rejected
enough superheat and the condensing tempera-
ture or saturation temperature has been reached,
these gases are referred to as 100% saturated
vapor. The refrigerant is then said to have
reached the 100% saturated vapor point, Figure
1-4.

One of the main functions of the condenser is
to condense the refrigerant vapor to liquid.
Condensing is system dependent and usually
takes place in the lower two-thirds of the con-
denser. Once the saturation or condensing tem-
perature is reached in the condenser and the
refrigerant gas has reached 100% saturated
vapor, condensation can take place if more heat
is removed. As more heat is taken away from
the 100% saturated vapor, it will force the vapor
to become a liquid or to condense. When con-
densing, the vapor will gradually phase change
to liquid until 100% liquid is all that remains.
This phase change, or change of state, is an
example of a latent heat rejection process, as
the heat removed is latent heat not sensible heat.
The phase change will happen at one tempera-
ture even though heat is being removed. Note:
An exception to this is a near-azeotropic blend
of refrigerants where there is a temperature
glide or range of temperatures when phase
changing (see Chapter Eight on blend tempera-
ture glide). This one temperature is the satura-
tion temperature corresponding to the satura-
tion pressure in the condenser. As mentioned
before, this pressure can be measured anywhere

Cop
yri

gh
t E

sc
o P

res
s



Refrigerant Pressures, States, and Conditions   7

Figure 1-4. Basic refrigeration system showing 100% saturated vapor and liquid points
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8   Troubleshooting and Servicing Modern Air Conditioning and Refrigeration Systems

on the high side of the refrigeration system as
long as line and valve pressure drops and losses
are negligible.

The last function of the condenser is to subcool
the liquid refrigerant. Subcooling is defined as
any sensible heat taken away from 100% satu-
rated liquid. Technically, subcooling is defined
as the difference between the measured liquid
temperature and the liquid saturation tempera-
ture at a given pressure. Once the saturated
vapor in the condenser has phase changed to
saturated liquid, the 100% saturated liquid point
has been reached. If any more heat is removed,
the liquid will go through a sensible heat rejec-
tion process and lose temperature as it loses
heat. The liquid that is cooler than the saturated
liquid in the condenser is subcooled liquid.
Subcooling is an important process, because it
starts to lower the liquid temperature to the
evaporator temperature. This will reduce flash
loss in the evaporator so more of the vaporiza-
tion of the liquid in the evaporator can be used
for useful cooling of the product load (see
Chapter Two on the importance of liquid
subcooling).

Receiver
The receiver acts as a surge tank. Once the
subcooled liquid exits the condenser, the re-
ceiver receives and stores the liquid. The liquid
level in the receiver varies depending on
whether the metering device is throttling opened
or closed. Receivers are usually used on sys-
tems in which a thermostatic expansion valve
(TXV or TEV) is used as the metering device.
The subcooled liquid in the receiver may lose
or gain subcooling depending on the surround-
ing temperature of the receiver. If the subcooled
liquid is warmer than receiver surroundings, the
liquid will reject heat to the surroundings and
subcool even more. If the subcooled liquid is
cooler than receiver surroundings, heat will be
gained by the liquid and subcooling will be
lost.

A receiver bypass is often used to bypass liq-
uid around the receiver and route it directly to
the liquid line and filter drier. This bypass pre-
vents subcooled liquid from sitting in the re-

ceiver and losing its subcooling. A thermostat
with a sensing bulb on the condenser outlet
controls the bypass solenoid valve by sensing
liquid temperature coming to the receiver, Fig-
ure 1-5. If the liquid is subcooled to a predeter-
mined temperature, it will bypass the receiver
and go to the filter drier.

Liquid Line
The liquid line transports high pressure
subcooled liquid to the metering device. In
transport, the liquid may either lose or gain
subcooling depending on the surrounding tem-
perature. Liquid lines may be wrapped around
suction lines to help them gain more subcooling,
Figure 1-6. Liquid/suction line heat exchangers
can be purchased and installed in existing sys-
tems to gain subcooling. The importance of
liquid subcooling will be covered more exten-
sively in Chapter Two.

Metering Device
The metering device meters liquid refrigerant
from the liquid line to the evaporator. There
are several different styles and kinds of meter-
ing devices on the market with different func-
tions. Some metering devices control evapora-
tor superheat and pressure, and some even have
pressure limiting devices to protect compres-
sors at heavy loads.

The metering device is a restriction that sepa-
rates the high pressure side from the low pres-
sure side in a refrigeration system. The com-
pressor and the metering device are the two
components that separate pressures in a refrig-
eration system. The restriction in the metering
device causes liquid refrigerant to flash to a
lower temperature in the evaporator because of
its lower pressure and temperature.

Evaporator
The evaporator, like the condenser, acts as a
heat exchanger. Heat gains from the product
load and outside ambient travel through the
sidewalls of the evaporator to vaporize any liq-
uid refrigerant. The pressure drop through the
metering device causes vaporization of some
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Refrigerant Pressures,
States, and Conditions

CHAPTER
O N E

The typical vapor compression refrigeration
system shown in Figure 1-1 can be divided into
two pressures: condensing (high side) and
evaporating (low side). These pressures are di-
vided or separated in the system by the com-
pressor discharge valve and the metering de-
vice. Listed below are field service terms often
used to describe these pressures:

Condensing Evaporating
Pressure Pressure

High side pressure Low side p essure
Head pressure Suction pressure
Discharge pressure Back press re

CONDENSING PRESSURE

The condensing pres ure is the pressure at
which the refrigeran  changes state from a va-
por to a liquid. This phase change is referred to
as condensation. This pressure can be read
direct y from a pressure gauge connected any-
where between the compressor discharge valve
and the entrance to the metering device, as-
suming there is negligible pressure drop. In
reality, line and valve friction and the weight
of the liquid itself cause pressure drops from
the compressor discharge to the metering de-
vice. If a true condensing pressure is needed,
the technician must measure the pressure as

close to the condens r as possible to avoid these
pressure drops  This pressure is usually mea-
sured on smaller systems near the compressor
valves, Figure 1-2. On small systems, it is not
critical where a technician places the pressure
gauge (as long as it is on the high side of the
system), because pressure drops are negligible.
The pressure gauge reads the same no matter
where it is on the high side of the system if line
and valve losses are negligible.

EVAPORATING PRESSURE

The evaporating pressure is the pressure at
which the refrigerant changes state from a liq-
uid to a vapor. This phase change is referred to
as evaporation or vaporizing. A pressure gauge
placed anywhere between the metering device
outlet and the compressor (including compres-
sor crankcase) will read the evaporating pres-
sure. Again, negligible pressure drops are as-
sumed. In reality, there will be line and valve
pressure drops as the refrigerant travels through
the evaporator and suction line. The technician
must measure the pressure as close to the evapo-
rator as possible to get a true evaporating pres-
sure. On small systems where pressure drops
are negligible, this pressure is usually measured
near the compressor (see Figure 1-2). Gauge
placement on small systems is usually not criti-
cal as long as it is placed on the low side of the
refrigeration system, because the refrigerant
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Figure 1-1. Typical compression refrigeration system

vapor pressure acts equally in all directions. If
line and valve pressure drops become substan-
tial, gauge placement becomes critical. In larger
more sophisticated systems, gauge placement
is more critical because of associated line and

valve pressure losses. If the system has signifi-
cant line and valve pressure losses, the techni-
cian must place the gauge as close as possible
to the component that requires a pressure
reading.
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saturated vapor, respectively. Saturation occurs
in both the evaporator and condenser. At satu-
ration, the liquid experiences its maximum tem-
perature for that pressure, and the vapor expe-
riences its minimum temperature. However,
both liquid and vapor are at the same tempera-
ture for a given pressure when saturation oc-
curs. Saturation temperatures vary with differ-
ent refrigerants and pressures. All refrigerants
have different vapor pressures. It is vapor pres-
sure that is measured with a gauge.

Vapor Pressure

Vapor pressure is the pressure exerted on a
saturated liquid. Any time saturated liquid and
vapor are together (as in the condenser and
evaporator), vapor pressure is generated. Va-
por pressure acts equally in all directions and
affects the entire low or high side of a refrig-
eration system.

As pressure increases, saturation temperature
increases; as pressure decreases, saturation tem-
perature decreases. Only at saturation are there
pressure/temperature relationships for refriger-
ants. Table 1-1 shows the pressure/temperature
relationship at saturation for refrigerant 134a
(R-134a). If one attempts to raise the tempera-
ture of a saturated liquid above its saturation
temperature, vaporization of the liquid will
occur. If one attempts to lower the temperature
of a saturated vapor below its saturation tem-
perature, condensation will occur. Both vapor-
ization and condensation occur in the evapora-
tor and condenser, respectively.

The heat energy that causes a liquid refrigerant
to change to a vapor at a constant saturation
temperature for a given pressure is referred to
as latent heat. Latent heat is the heat energy
that causes a substance to change state without
changing the temperature of the substance.
Vaporization and condensation are examples of
a latent heat process.

Figure 1-2. Semi-hermetic compressor showing pressure

access valves (Courtesy, Danfoss Automatic Controls,

Division of Danfoss, Inc.)

REFRIGERANT STATES AND CONDITIONS

Modern refrigerants exist either in the vapor or
liquid state. Refrigerants have such low freez-
ing points that they are rarely in the frozen or
solid state. Refrigerants can co-exist as vapor
and liquid as long as conditions are right. Both
the evaporator and condenser house liquid and
vapor refrigerant simultaneously if the system
is operating properly. Refrigerant liquid and
vapor can exist in both the high or low pres-
sure sides of the refrigeration system.

Along with refrigerant pressures and states are
refrigerant conditions. Refrigerant conditions
can be saturated, superheated, or subcooled.

Saturation
Saturation is usually defined as a temperature.
The saturation temperature is the temperature
at which a fluid changes from liquid to vapor
or vapor to liquid. At saturation temperature,
liquid and vapor are called saturated liquid and
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Temperature Pressure Temperature Pressure

(°F) (psig)  (°F)  (psig)

-10 1.8

-9 2.2

-8 2.6 30 25.6

-7 3.0 31 26.4

-6 3.5 32 27.3

-5 3.9 33 28.1

-4 4.4 34 29.0

-3 4.8 35 29.9

-2 5.3 40 34.5

-1 5.8 45 39.5

0 6.2 50 44.9

1 6.7 55 50.7

2 7.2 60 56.9

3 7.8 65 63.5

4 8.3 70 70.7

5 8.8 75 78.3

6 9.3 80 86.4

7 9.9 85 95.0

8 10.5 90 104.2

9 11.0 95 113.9

10 11.6 100 124.3

11 12.2 105 135.2

12 12.8 110 146.8

13 13.4 115 159.0

14 14.0 120 171.9

15 14.7 125 185.5

16 15.3 130 199.8

17 16.0 135 214.8

18 16.7

19 17.3

20 18.0

21 18.7

22 19.4

23 20.2

24 20.9

25 21.7

26 22.4

27 23.2

28 24.0

29 24.8

Table 1-1. R-134a saturated vapor/liquid pressure/

temperature chart

words, all of the liquid must be vaporized for
superheating to occur; the vapor must be re-
moved from contact with the vaporizing liquid.
Once all the liquid has been vaporized at its
saturation temperature, any addition of heat
causes the 100% saturated vapor to start super-
heating. This addition of heat causes the vapor
to increase in temperature and gain sensible
heat. Sensible heat is the heat energy that causes
a change in the temperature of a substance. The
heat energy that superheats vapor and increases
its temperature is sensible heat energy. Super-
heating is a sensible heat process. Superheated
vapor occurs in the evaporator, suction line,
and compressor.

Subcooling
Subcooling always refers to a liquid at a tem-
perature below its saturation temperature for a
given pressure. Once all of the vapor changes
state to 100% saturated liquid, further removal
of heat will cause the 100% liquid to drop in
temperature or lose sensible heat. Subcooled
liquid results. Subcooling can occur in both the
condenser and liquid line and is a sensible heat
process. Another method of subcooling liquid,

called liquid pressure amplificationTM, is cov-
ered in Chapter Two. This method increases
the pressure on subcooled liquid, causing it to
be subcooled even more. This creates a liquid
with a temperature below its new saturation
temperature for the new higher pressure.

A thorough understanding of pressures, states,
and conditions of the basic refrigeration sys-
tem enables the service technician to be a good
systematic troubleshooter. It is not until then
that a service technician should even attempt
systematic troubleshooting.

BASIC REFRIGERATION SYSTEM

Figure 1-3 illustrates a basic refrigeration sys-
tem. The basic components of this system are
the compressor, discharge line, condenser, re-
ceiver, liquid line, metering device, evaporator,
and suction line. Mastering the function of each
individual component can assist the refrigera-

Superheat
Superheat always refers to a vapor. A super-
heated vapor is any vapor that is above its
saturation temperature for a given pressure. In
order for vapor to be superheated, it must have
reached its 100% saturated vapor point. In other
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Figure 1-3. Basic refrigeration system

tion technician with analytical troubleshooting
skills, saving time and money for both techni-
cian and customer.

Compressor
One of the main functions of the compressor is
to circulate refrigerant. Without the compres-

sor as a refrigerant pump, refrigerant could not
reach other system components to perform its
heat transfer functions. The compressor also
separates the high pressure from the low pres-
sure side of the refrigeration system. A differ-
ence in pressure is mandatory for fluid (gas or
liquid) flow, and there could be no refrigerant
flow without this pressure separation.
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Another function of the compressor is to el-
evate or raise the temperature of the refrigerant
vapor above the ambient (surrounding) tempera-
ture. This is accomplished by adding work, or
heat of compression, to the refrigerant vapor
during the compression cycle. The pressure of
the refrigerant is raised, as well as its tempera-
ture. By elevating the refrigerant temperature
above the ambient temperature, heat absorbed
in the evaporator and suction line, and any heat
of compression generated in the compression
stroke can be rejected to this lower temperature
ambient. Most of the heat is rejected in the
discharge line and the condenser. Remember,
heat flows from hot to cold, and there must be
a temperature difference for any heat transfer
to take place. The temperature rise of the re-
frigerant during the compression stroke is a
measure of the increased internal kinetic en-
ergy added by the compressor.

The compressor also compresses the refriger-
ant vapors, which increases vapor density. This
increase in density helps pack the refrigerant
gas molecules together, which helps in the con-
densation or liquification of the refrigerant gas
molecules in the condenser once the right
amount of heat is rejected to the ambient. The
compression of the vapors during the compres-
sion stroke is actually preparing the vapors for
condensation or liquification.

Discharge Line
One function of the discharge line is to carry
the high pressure superheated vapor from the
compressor discharge valve to the entrance of
the condenser. The discharge line also acts as
a desuperheater, cooling the superheated va-
pors that the compressor has compressed and
giving that heat up to the ambient (surround-
ings). These compressed vapors contain all of
the heat that the evaporator and suction line
have absorbed, along with the heat of compres-
sion of the compression stroke. Any generated
motor winding heat may also be contained in
the discharge line refrigerant, which is why the
beginning of the discharge line is the hottest
part of the refrigeration system. On hot days
when the system is under a high load and may
have a dirty condenser, the discharge line can

reach over 400°F. By desuperheating the re-
frigerant, the vapors will be cooled to the satu-
ration temperature of the condenser. Once the
vapors reach the condensing saturation tempera-
ture for that pressure, condensation of vapor to
liquid will take place as more heat is lost.

Condenser
The first passes of the condenser desuperheat
the discharge line gases. This prepares the high
pressure superheated vapors coming from the
discharge line for condensation, or the phase
change from gas to liquid. Remember, these
superheated gases must lose all of their super-
heat before reaching the condensing tempera-
ture for a certain condensing pressure. Once
the initial passes of the condenser have rejected
enough superheat and the condensing tempera-
ture or saturation temperature has been reached,
these gases are referred to as 100% saturated
vapor. The refrigerant is then said to have
reached the 100% saturated vapor point, Figure
1-4.

One of the main functions of the condenser is
to condense the refrigerant vapor to liquid.
Condensing is system dependent and usually
takes place in the lower two-thirds of the con-
denser. Once the saturation or condensing tem-
perature is reached in the condenser and the
refrigerant gas has reached 100% saturated
vapor, condensation can take place if more heat
is removed. As more heat is taken away from
the 100% saturated vapor, it will force the vapor
to become a liquid or to condense. When con-
densing, the vapor will gradually phase change
to liquid until 100% liquid is all that remains.
This phase change, or change of state, is an
example of a latent heat rejection process, as
the heat removed is latent heat not sensible heat.
The phase change will happen at one tempera-
ture even though heat is being removed. Note:
An exception to this is a near-azeotropic blend
of refrigerants where there is a temperature
glide or range of temperatures when phase
changing (see Chapter Eight on blend tempera-
ture glide). This one temperature is the satura-
tion temperature corresponding to the satura-
tion pressure in the condenser. As mentioned
before, this pressure can be measured anywhere
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Figure 1-4. Basic refrigeration system showing 100% saturated vapor and liquid points
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on the high side of the refrigeration system as
long as line and valve pressure drops and losses
are negligible.

The last function of the condenser is to subcool
the liquid refrigerant. Subcooling is defined as
any sensible heat taken away from 100% satu-
rated liquid. Technically, subcooling is defined
as the difference between the measured liquid
temperature and the liquid saturation tempera-
ture at a given pressure. Once the saturated
vapor in the condenser has phase changed to
saturated liquid, the 100% saturated liquid point
has been reached. If any more heat is removed,
the liquid will go through a sensible heat rejec-
tion process and lose temperature as it loses
heat. The liquid that is cooler than the saturated
liquid in the condenser is subcooled liquid.
Subcooling is an important process, because it
starts to lower the liquid temperature to the
evaporator temperature. This will reduce flash
loss in the evaporator so more of the vaporiza-
tion of the liquid in the evaporator can be used
for useful cooling of the product load (see
Chapter Two on the importance of liquid
subcooling).

Receiver
The receiver acts as a surge tank. Once the
subcooled liquid exits the condenser, the re-
ceiver receives and stores the liquid. The liquid
level in the receiver varies depending on
whether the metering device is throttling opened
or closed. Receivers are usually used on sys-
tems in which a thermostatic expansion valve
(TXV or TEV) is used as the metering device.
The subcooled liquid in the receiver may lose
or gain subcooling depending on the surround-
ing temperature of the receiver. If the subcooled
liquid is warmer than receiver surroundings, the
liquid will reject heat to the surroundings and
subcool even more. If the subcooled liquid is
cooler than receiver surroundings, heat will be
gained by the liquid and subcooling will be
lost.

A receiver bypass is often used to bypass liq-
uid around the receiver and route it directly to
the liquid line and filter drier. This bypass pre-
vents subcooled liquid from sitting in the re-

ceiver and losing its subcooling. A thermostat
with a sensing bulb on the condenser outlet
controls the bypass solenoid valve by sensing
liquid temperature coming to the receiver, Fig-
ure 1-5. If the liquid is subcooled to a predeter-
mined temperature, it will bypass the receiver
and go to the filter drier.

Liquid Line
The liquid line transports high pressure
subcooled liquid to the metering device. In
transport, the liquid may either lose or gain
subcooling depending on the surrounding tem-
perature. Liquid lines may be wrapped around
suction lines to help them gain more subcooling,
Figure 1-6. Liquid/suction line heat exchangers
can be purchased and installed in existing sys-
tems to gain subcooling. The importance of
liquid subcooling will be covered more exten-
sively in Chapter Two.

Metering Device
The metering device meters liquid refrigerant
from the liquid line to the evaporator. There
are several different styles and kinds of meter-
ing devices on the market with different func-
tions. Some metering devices control evapora-
tor superheat and pressure, and some even have
pressure limiting devices to protect compres-
sors at heavy loads.

The metering device is a restriction that sepa-
rates the high pressure side from the low pres-
sure side in a refrigeration system. The com-
pressor and the metering device are the two
components that separate pressures in a refrig-
eration system. The restriction in the metering
device causes liquid refrigerant to flash to a
lower temperature in the evaporator because of
its lower pressure and temperature.

Evaporator
The evaporator, like the condenser, acts as a
heat exchanger. Heat gains from the product
load and outside ambient travel through the
sidewalls of the evaporator to vaporize any liq-
uid refrigerant. The pressure drop through the
metering device causes vaporization of some
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